01-10 08:57
벤치마킹
Notice
Recent Posts
Recent Comments
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 편도수술
- 가족소고기외식
- 중학교입학수학문제
- 종이캐리어
- 홍시스무디
- 커피쏟음
- 결항
- 오트눈썰매장
- 주차넉넉
- 양양솔비치아침
- 커피
- DFS
- 에어아시아
- 고마워다음
- 푸르지오포레피스
- 싱가폴중학교수학문제
- 사진문자추출
- 영통외식
- 양양솔비치조식
- 영통칠프로칠백식당
- 검색완료
- 아이혼자다녀옴
- 파이썬
- 영통역소고기
- 양양솔비치세프스키친
- 사진문자추출하기
- 사진에서 글자추출
- 당근마켓중고차
- 양양솔비치 뷔페
- 결항전문
Archives
- Today
- Total
너와나의 관심사
tensorflow keras 로 모델 training save (ModelSave 활용) 본문
import os
# horses/humans 데이터셋 경로 지정
train_horse_dir = './classification_data/horses'
train_human_dir = './classification_data/humans'
train_horse_or_human = './classification_data/'
# horses 파일 이름 e
train_horse_names = os.listdir(train_horse_dir)
print(train_horse_names[:10])
# humans 파일 이름 리스트
train_human_names = os.listdir(train_human_dir)
print(train_human_names[:10])
# horses/humans 총 이미지 파일 개수
print('total training horse images:', len(os.listdir(train_horse_dir)))
print('total training human images:', len(os.listdir(train_human_dir)))
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
nrows = 4
ncols = 4
pic_index = 0
fig = plt.gcf()
fig.set_size_inches(ncols * 4, nrows * 4)
pic_index += 8
next_horse_pix = [os.path.join(train_horse_dir, fname) for fname in train_horse_names[pic_index-8:pic_index]]
next_human_pix = [os.path.join(train_human_dir, fname) for fname in train_human_names[pic_index-8:pic_index]]
for i, img_path in enumerate(next_horse_pix+next_human_pix):
sp = plt.subplot(nrows, ncols, i + 1)
sp.axis('Off')
img = mpimg.imread(img_path)
plt.imshow(img)
#plt.show()
import tensorflow as tf
def create_model():
# 모델 define
model = tf.keras.models.Sequential([
# The first convolution
tf.keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=(300, 300, 3)),
tf.keras.layers.MaxPool2D(2, 2),
# The second convolution
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
tf.keras.layers.MaxPool2D(2, 2),
# The third convolution
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPool2D(2, 2),
# The fourth convolution
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPool2D(2, 2),
# The fifth convolution
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPool2D(2, 2),
# Flatten
tf.keras.layers.Flatten(),
# 512 Neuron (Hidden layer)
tf.keras.layers.Dense(512, activation='relu'),
# 1 Output neuron
tf.keras.layers.Dense(1, activation='sigmoid')
])
return model;
from tensorflow.keras.optimizers import RMSprop
model = create_model();
model.summary()
model.compile(loss='binary_crossentropy',
optimizer=RMSprop(learning_rate=0.001),
metrics=['accuracy'])
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1/255)
train_generator = train_datagen.flow_from_directory(
train_horse_or_human,
target_size=(300, 300),
batch_size=128,
class_mode='binary'
)
checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
# 모델의 가중치를 저장하는 콜백 만들기
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
save_weights_only=True,
verbose=1)
history = model.fit(
train_generator,
steps_per_epoch=8,
epochs=15,
verbose=1
#,callbacks = [cp_callback]
)
tf.saved_model.save(model, "./training_2")
'머신러닝 > 딥러닝' 카테고리의 다른 글
Keras saved_model.h5 모델 로딩하기 (0) | 2023.01.31 |
---|---|
안드로이드 on device learning (0) | 2022.02.13 |
Keras model 로딩해서 layer 변경하기 (0) | 2022.02.08 |
Keras 로 학습된 모델로 객체생성(compile) 하고 싶다면 (0) | 2022.02.06 |
Comments